October 16, 2003

MSF Build System

Lorenzo Fluckiger

Developer s Documentation

Table of Contents

S0 (U = = 1S 2
HOW TO USE ..ttt 2
CONFIGQUIBLTON ...ttt 4
HOW 1T WOTKS. ...t 5
Variables used by the MSF build SyStem.........ccoveieinininieee e 6
DEPENUENCIES. ...ttt sttt b bttt b e e b 9

Libraries naming convention for linking search and prerequisites expression. 10

Automatic Windows/Unix filenames handling............cccoevereninennieninineneens 10

Requirements

Requirements

The M SF build system uses the standard gmake program available on all M SF target
platforms: SGI-IRIX, Sun-SunOS, Intel-Linux and Intel-Wi ndows.

How to use

The MSF build system is based on a set of partial makefiles defining variables and
rules that allow the developer to benefit from a powerful build system with a
minimum of effort. All these makefiles are located in $MSF_ HOM E/makes.

The principle of the MSF build system is the following: the developer defines a set
of variables which will be the input of the predefined rules aswell asthe final targets
(libraries and/or executable). By including the top level partial makefile, most of the
work is automagically done.

The simple exampleillustrated on Figure 1 demonstrates a typical usage of the M SF
build system.

Build Di Libraries Install
Base.h Base.cpp uild Directory Directory
msf_test msf_test |
- library library | !
Deriv.h Deriv.cpp S
Program | Program Program |
.c Exec. Exec. | |
pp | T T 1 kEXec. o T T 0 BASW P
Source Files N LN
Directory Binaries Install
Test i
Test.cpp | | | > Exec Directory

Figure 1. Build example of a simple set of source files

Consider the four files Base. h, Base. cpp, Deri v. h, Deri v. cpp that will
form alibrary named msf _t est, which is part of the MSF standard libraries. The
program Program cpp will become an executable which is aso one of the

1. The Cygwin package is needed to build M SF under Window, even if the Visual-C++ compiler is
used.

MSF Build System

How to use

standard programs provided by MSF. Also, the directory contains a Test . cpp
program which is used only locally.

The first step is to define the input variables that will control the build system (see
Section “Variables used by the MSF build system” for a full description of these
variables):

LI B_SRC : = Base.cpp Deriv.cpp # source file(s) for the library

LI B_NAME : = nsf_test # library nane
EXEC_SRC : = Program cpp # MSF program source file(s)
TEST_SRC : = Test.cpp # Test programsource file(s)

LI BS_TO | NSTALL : = nsf_test # library(ies) to install
PROGS TO | NSTALL := Program # executrable(s) to install

Then additional flags for the compilation / link can be specified by adding them to
the list of the standard variables:

LDLI BS += -| msf _t est # Libraries to link with
LDFLAGS += $(MSF_LIB_DI R) # Path to these libraries

The key point is then to include the top level makefile of the MSF build system?!
(located into the $MSF_HOVE/ makes directory):

i ncl ude ../ make. i ncl

At this point, severa new variables have been automatically generated. they can be
used in the remaining portion of the makefile (examples are given for aLinux build,
with MSF_HOME setto/ pr oj ect s/ MSF).

« TEST_EXE contains the name of all the test programs; Li nux/ Test

« EXEC_EXE contains the name of all executables: Li nux/ Progr am

« MSF_PROGS contains the target destination names of the programsto install:
/ proj ect s/ MSF/ bi n/ Li nux/ Program

« MSF_LI BS contain the target destination names of the librariesto install:
[projects/NMSF/I'ib/Linux/Ilibnsf test.a

These variables are a convenience to define what the makefile has to produce. For
example, simply specifying the following rule:
defaul t: $(MSF_LIBS) $(MSF_PROGS) $(TEST_EXE)

will compile and install the libraries and programs. This will be achieved by
following the MSF rules which define how to generate the dependencies, how to
compile, how to link and how to install files. Note the TEST_SRC is a separate
variable alowing to exclude test programs from the MSF_PROGS installable

1.Note that the MSF build system require the input variable to be defined before
including make. i ncl .

MSF Build System 3

ENVIRONMENT
VARIABLES

MSF_HOVE

RTI _HOME &
RTI _BU LD _TYPE

FLTK_HOVE

PLATFORM DEPEND
BUILD

Configuration

programs. To also build the test programs, TEST_EXE have been included in the
defaul t rule.

Note the M SF build system requires a default rule to work correctly (the first target
which is called bui | d_goal inside make. conmon simply calls the default
target). If thedef aul t ruleisnot present in the user makefile, amessage like:

“no rule to make target ‘ default’ needed by ‘build _goal’” will be issued.

In addition to the rule specifying the main target, an additional dependency rule will
probably be needed:

$(EXEC_EXE): $(LOADLI BES)

It specifies that the program files to be produced are depending on the library
composed of the L1 B_SRC objects files (and then will be linked against).

At this point, simply typing make on the command line will build everything in the
current directory. This example makefileis provided in the
MSF_HOVE/ mekes/ t est s directory.

Configuration

The MSF build system uses several environment variables that have to be defined.
The user is free to define these variables using his preferred method, however, afile
called msf sour ce is provided and can be configured to reflect the current setup.

Defines the top directory of the current MSF tree
Definesthe location of the RTI to use

Define the location of the FLTK package (only needed by the components requiring
a GUI based on the Fast Light ToolKit)

In addition to these environment variables, a set of more fine tuning parameters can
be adjusted in the platform dependant makefiles: make. Li nux, make. | Rl X, etc.
There the compiler/linker can be reconfigured as well as the various options
dependant on a particular platform. It should be noted that the compiler command to
invoke can aso be defined with the environment variable COVPI LE_CNMD, which
case will override the one defined in the makefile system.

The MSF build system is configured to work on multiple platforms with the same
source code: all dependencies, object files, libraries and programs are generated in
sub-directories reflecting the platform name. By default MSF uses the convention
described in Table 1.

However, when there is a need to mix multiple flavors of compiler/libraries versions
on the same platform (like gcc-2.95 or gce-3.1 under a Suse 8.1 Linux), more
characterized directory names are required. The MSF build system supports this by
setting the environment variable MSF_USES FULL_ARCH. For example with a

MSF Build System

ar chname. sh

BUILD CONFIGURATION

make. i nc

make. ar ch_narne

How it works

Platform Sub-directory name
Any Linux on Intel processors Li nux

Any IRIX on MIPS processors I RI X

WindowsNT, Windows2000 W n32

Table 1. Platform dependant directory names

cshell:
setenv MSF_USES FULL_ARCH 1

In this latter case, one will have to create into the makes directory a makefile
reflecting the particular architecture (it also can be simply linked to one of the
default platform dependant makefile file). For exampleif MSF_USES FULL_ARCH
is used on a Linux system running on an Pentium processor and using gcc version
2.95 and glibc 2.2, a configuration file named nake. i x86- | i nux-gcc2. 95-
gl i bc2. 2 will berequired.

The architecture dependant names are generated with a shell script archname.sh
located in the MSF_ HOM E/makes directory.

Return the architecture name from queries to the system/compiler and is used to
generate platform dependent directories. The modifier -a can be added if fully
qualified architecture names are required. Do archname.sh -h to see all the options.

The build configuration regarding optimization and type of librariesis also set in the
platform dependent makefiles. They define a variable MSF_BUI LD_CONFI G
which contains the characteristics of the desired build. Currently only two options
are available:

« Optimized or Debug version set with opt i m zed and debug
« Dynamic or Shared libraries set with dynam c andst ati c

For example the following definition in make. Li nux:
MSF_BUI LD _CONFI G : = debug static
will build M SF using static libraries with debug information.

How it works

The MSF build system is based on a set of partial makefiles having distinct roles:

Is the top level makefile to include from the working makefile. This make portion
mainly does some sanity checking and includes all the other necessary makefiles.

Defines a set of variables (compiler name, file extensions or compile flags) that are
platform dependent. This file can be modified to meet specific platform needs.

MSF Build System 5

make. dirs

make. rul es

make. conmon

make. docs

Variables used by the MSF build system

Note: make.dir is not used any more in the current version of MSF. Some of the
important directories definition are simply put in the platform dependant makefiles.
Defines all the directories used by the MSF build system. This makefile uses the
variables MSF_HOVE, RTI HOME, RTI _BUI LDand FLTK_HOVE and can be
included by external project makefilesfor convenience.

Is the core of the build system. It expands input variables into complete filenames
and contains al the rules to make the various targets.

Contains some common rules like how to ¢l ean directoriesor | i st thefiles. This
make file is not included by default and it is to the user to insert it into his own
makefile if he would like to use it (which is strongly encouraged). As
make. common contains mainly PHONY targets, it should be included at the end of
the user makefile: i ncl ude ../ make. conmon

Contains instructions relative to the documentation generation process.

As mentioned, the behavior of the build system is realy determined by
nmeke. r ul es. Figure 2 shows how the rules cascade from initial targets during the
build process.

Variables used by the MSF build system

To help MSF devel opers to keep simple makefiles, the M SF main make system uses
aset of variables asinputs for itsrules.

List of sources files needed to build the library.

Name of the library to be generated. This name is the base name of the library. The
makefile system will expending it according the build platform and configuration.
For example, if LI B_NAME isset tot est , the full library name under Linux when
building shared libraries will become: | i bt est . so.

Optional path where to put the local library. Thisis amodifier for the LOADLIBES
generated variable. By default the library goesin a platform dependant sub-directory
from the current makefile path. By defining LIB_PATH, it is possible to redirect this
library somewhere else. This is particularly useful when multiple directories with
their own makefile all participate in building the same library.

List of generated files (not existing in the original source tree). This variable is used
to specify al the sources files which will also be used to create the library, but are
not existing when make is invoked. It is necessary to have a separate variable than
LI B_SRC because the makefile does some sanity checks before running: it verifies
that al the listed files are existing to avoid later problems. Of course, generated files
should be excluded from this sanity check. For example, GEN_SRC is used in the
Viz component to list the MOC files.

INPUT VARIABLES
LI B_SRC
LI B_NAME
LI B_PATH
GEN_SRC
6

MSF Build System

Variables used by the MSF build system

Y

rule®: include dependencies files rule: generate dependency files
" -include $(DEPEND_FI LES) ' ./'1'i nux/ Program d
erequisite: dependencies files exist erequisite: source file
prereq " ./linux/Programd prereq " Program cpp
. Call the rule to make the Lo .
action: dependencies files action: generate dependency files

arrows indicate that the execution of current rule
implies the execution of another rule to satisfy
the prerequisite

) is not a real rule, but gmake will try to create any
included file if it does not exist

rule: install the executables rule: install the libraries
' [MSF/ bi n/ |'i nux/ Program ' I MSF/1ib/linux/libmnsf.a
- executables exist locally - libraries exists locally
prerequisite:) prerequisite:) _
./'1'i nux/ Program linux/1ibnsf.a
. rogram install S
action: ~ copy programs to insta action: copy libraries to install destination
destination)
build a program create the library
rule: _ rule: _)
./'1'inux/ Program Alinux/1ibmsf.a
- program obj and other deps. exist - all objects file exist
prerequisite: i) prerequisite: . :
./linux/Programo & |ibnsf.a ./linux/Base.o & Deriv.o
action: link the objects to produce an action: create the archive
excutable

v

compile an object file

./'1'i nux/ Program o

source file + depend file (included)
Program cpp

rule:

prerequisite:

action: compile the source file

Figure 2. Propagation of the rulesin the MSF build system

EXEC _SRC List of source files that will generate executables intended to become part of MSF
distributable. To actually have these executable installed, you will have to list the
program names into PROGS_TO _| NSTALL and define MSF_PROGS has one of the
makefile target. Note that without defining PROGS_TO | NSTALL, EXEC_SRC
can be used the same way than TEST_SRC.

MSF Build System 7

TEST_SRC

LI BS_TO | NSTALL

PROGS_TO | NSTALL

GENERATED
VARIABLES

LI B_OBJS

GEN_OBJS

EXEC OBJS

TEST_OBJS

EXEC_EXE

TEST_EXE

LOADLI BES

MSF_LI BS
MSF_PROGS

DEPEND_FI LES

Variables used by the MSF build system

List of source filesthat will generate test programs. TEST_SRC could be use even if
some programs are not test programs, but are designed to remain local to the
working directory.

A set of libraries name. The libraries listed here will be build and copied into the
I NSTALL LI B DI R (defined in rmake. di rs) directory. The libraries names
follow the samerulethan LI B_NAME.

A set of programs to install. The programs listed here will be build and copied into
the | NSTALL_BI N_DI R (defined in make.dirs) directory. The program names
should not contain any extension which will be added automatically by the makefile
according to the platform, For example, if PROGS_TO | NSTALL is set to
MyProgram then under Windows the program name will become
MyPr ogr am exe.

From these variables, a set of generated variables are produced by the makefile.
Some of these variables are for internal makefile use mainly, while others will be
used by the component developer in his makefile.

List of object files composing the library (normally not used in your makefile). The
LIBO_OBJSfiles are composed with the build architecture directory and the correct
extension. For exampleFi | e. cpp becomes Li nux/ Fil e. o.

List of object files for generated source files. Samerulesasfor LI B_OBJ S applies.

List of object files corresponding to the MSF executables. Same rules as for
LI B_OBJS applies.

List of object files corresponding to the test programs. Samerulesasfor LI B_OBJS
applies.

List of produced MSF programs. The generated names contain the output directory
and the correct file extension (.exe under Windows)

List of produced test programs. Same rules as for EXEC _EXE applies.

The full name of the library to be produced (including optional L1 B_PATH, build
architecture, library prefix and library suffix):
mylib -> Linux/Ilibnylib.so.

List of librariesto install with the full path to the output directory.
List of the program to install with the full path to the output directory.

A list of al the dependency files: it is generated from LIB_SRC, TEST_SRC and
EXEC_SRC.

MSF Build System

STANDARD VARIABLES

CXX

CPPGFLAGS
| NCLUDES
CXXFLAGS

LDFLAGS

LDLI BS

Dependencies

The MSF build system uses the standard make conventions for the variables used in
compile and link rules. MSF makefiles only add arguments to these variables,
meaning that one can add parameters by setting the corresponding environment
variable. For example, if the developer wants a special build for testing purpose with
the preprocessor argument “-DMY_TEST”, it can do so without modifying the
makefile by setting it in the shell:

set env CPPFLAGS - DWY_TEST

The following standard variables are used and can then be augmented with
environment variables:

The compiler to use. Thisis the only environment variable which is taken asis (not
added to the makefile one) if it is defined. For example, under Linux, the
architecture makefile defines the compiler to be g++. If one wants to test with a
another compiler, it could do:

setenv CXX /opt/experinmental/gcc

(Note that this exampleis a bad idea of how to use another compiler: it will be better
to have the PATH and LD_LIBRARY_PATH variable set correctly for an alternate
compiler)

The preprocessor flags (for example - DNDEBUG)

Directive for files search used by the preprocessor (for example- 1. ./ GUl)
The compiler flags (for example - g)

Flags for the linker (for example- L. ./ GJI / W n32)

Librariesto link with (for example - | mygui)

Dependencies

The dependencies are generated automatically by the make process. Thereisno need
to specify explicitly make depend each time a change in the dependency has
occurred. The dependenciesis updated each time it is needed.

The behavior uses the makefile remake capability of gmake (see GNU make manual,
section 4.12: Generating Prerequisites Automatically): for each source file
(fil e.cpp) a corresponding dependency file ($(OS)/fil e. d) is generated.
The dependency file fil e.d specifies the dependencies of the object file
(fil e. o) onal the source files required, and includes in addition a dependency of
the file itself (fil e.d) on the same set of source files to ensure that the
dependencies are up to date. Finaly thelist of dependency filesis simply included in
the top makefile (with some additional tests to avoid including dependencies for
special targetslikecl ean our count):

-incl ude $(DEPEND_FI LES)

A typical dependency file will look likethis (e.g. Li nux/ Base. d):

MSF Build System 9

Libraries naming convention for linking search and prerequisites expression

Li nux/ Base. d Li nux/ Base. o: Base.cpp Base.h

Libraries naming convention for linking search and
prerequisites expression

Thelibraries are expressed in the M SF build system with theform - | nyl i b. It
alowsthe linker to search for librariesnames| i brryl i b. so,li byl i b. so. 1

orl i bnyl i b. al. Inaddition, it allowsto define the same compact library name on
al platforms, without worrying about the extensions.

But most important, the same -Imylib syntax can be used in the prerequisite of rules.
For example, if aprogram Pr ogr am exe dependsonthelibrary | i byl ib. i b
the dependency could be expressed like:

Program exe: Proramcpp -lnylib

(Note that this syntax is not platform portable, but just here for illustration)

To alow this behavior, the build system expands the libraries names with their full
path by searching for these libraries in a set of directories. The MSF build system
uses the vpat h command to instruct makefile to search for MSF build libraries in
their install directory.

If adeveloper need to add directories to the search path because some of hislibraries
are not located in the standard M SF libraries directory, he can simply add arguments
to the VPATH variable. For example:

VPATH += ../ GQUI/ $(0S)

Automatic Windows/Unix filenames handling

MSF build system requires Cygwin under Windows to take advantage of the
makefile program and several Unix utilities (sed, awk, uname, etc). In addition, MSF
currently also uses gcc under Windows to create the dependencies. However, MSF
uses the Microsoft Visual C++ compiler/linker. This raises a pathname problem:

» makefile and gcc -MM (dependencies) use and produce Unix like filenames
(for example/ cygdri vel/ c/ User s/ My\ Msf/ Makefil e)

» cl.exeand link.exe require Windows filenames
(for example“C: \ User s\ My Msf\ Makefil e”)

The problem is solved by the MSF build system using the cygpat h utility when
defining the build rules:

« The dependency rule convert filenames starting with MSF_HOME to their Unix
counterpart

1. Under Windows the libraries makefile will search for likbmylib.lib and libmylib.dl|

10

MSF Build System

Automatic Windows/Unix filenames handling

« The compilée/link rule convert filenames starting with MSF_HOME to their Win-
dows counterpart

These integrated build rules free the user of bad path names problems and let him
use either Unix or Windows path in the environment variable definition of
MSF_HOME. Note that the definition of other paths like RTI_HOME should use the
Windows convention because these path are not converted in the compile/link rule.
However, libraries external to MSF are not used in the prerequisite generation, and
the Windows path name does not hurt the build system.

MSF Build System 11

	MSF Build System
	Requirements
	How to use
	Configuration
	Environment Variables
	Platform depend build
	Build Configuration

	How it works
	Variables used by the MSF build system
	Input Variables
	Generated Variables
	Standard Variables

	Dependencies
	Libraries naming convention for linking search and prerequisites expression
	Automatic Windows/Unix filenames handling

